The Baryon Asymmetry of the Universe

Gilly Elor

University of Washington

Snowmass RF Town Hall Meeting Oct 2
RF4 topical group

LOI submitted by: Gilly Elor, Julia Harz, Seyda Ipek, and Bibhushan Shakya

Baryogenesis

What mechanism generated the primordial baryon asymmetry of the Universe?

Observation (CMB, BBN):

$$Y_B^{\text{meas}} \equiv \frac{n_b - n_{\bar{b}}}{s} = 8.7 \times 10^{-11}$$

Baryogenesis

Need to go Beyond the Standard Model (BSM)

The Sakharov conditions:

- Baryon number violation.
- Conjugate rates must be different (CP violation).
- Out of thermal equilibrium.

B violation	CP violation Out of equilibrium		
Sphalerons	new CP violation in quarks	Cosmological phase transitions	
Explicit B violation	new CP violation in leptons	out-of-equilibrium decays	
Explicit L violation	new CP violation in scalars	$chemical\ potential$	
Some other particle-number violation	CP violation in a dark sector		

High vs Low Scale Baryogenesis

Physics motivation for a white paper

- A concrete summary of the traditional options for generating the baryon asymmetry (generally not testable).
- Overview of new proposals of baryogengesis low scales.
- Experimental connections.

Of particular relevance to RF-4: new mechanisms for low scale baryogengesis that can be searched for in B and L violating processes.

Baryogenesis from B Mesons

G. Elor, M. Escudero, A. Neslon [arXiv: 1810.00880 PRD]

$$Y_{B} \propto \sum_{q=s,d} A_{\ell\ell}^{q} imes \operatorname{Br}(B_{q}^{0} o \phi \, \xi + \operatorname{Baryon} + X)$$

$$A_{\ell\ell}^{q} = \frac{\Gamma\left(\bar{B}_{q}^{0} o B_{q}^{0} o f\right) - \Gamma\left(B_{q}^{0} o \bar{B}_{q}^{0} o f\right)}{\Gamma\left(\bar{B}_{q}^{0} o B_{q}^{0} o f\right) + \Gamma\left(B_{q}^{0} o \bar{B}_{q}^{0} o f\right)}$$

$$A_{\ell\ell}^{q} = \frac{\Gamma\left(\bar{B}_{q}^{0} \to B_{q}^{0} \to f\right) - \Gamma\left(B_{q}^{0} \to \bar{B}_{q}^{0} \to \bar{f}\right)}{\Gamma\left(\bar{B}_{q}^{0} \to B_{q}^{0} \to f\right) + \Gamma\left(B_{q}^{0} \to \bar{B}_{q}^{0} \to \bar{f}\right)}$$

Experimental observables!

Exotic "B violating" decay

Searches underway by Belle, Belle-II, BaBar!

$$Br(B_q^0 \to \phi \, \xi + Baryon + X)$$

Operator/Decay	Initial State	Final state	$\Delta M \; ({ m MeV})$
$egin{aligned} \mathcal{O} &= \psi b u d \ ar{b} & ightarrow \psi u d \end{aligned}$	B_d	$\psi + n (udd)$	4340.07
	B_s	$\psi + \Lambda \left(uds \right)$	4251.21
	B^+	$\psi + p \left(duu \right)$	4341.05
	Λ_b	$\bar{\psi} + \pi^0$	5484.5
$\mathcal{O} = \psi b u s$ $\bar{b} \to \psi u s$	B_d	$\psi + \Lambda \left(usd \right)$	4163.95
	B_s	$\psi + \Xi^0 \left(uss \right)$	4025.03
	B^+	$\psi + \Sigma^{+} (uus)$	4089.95
	Λ_b	$\bar{\psi} + K^0$	5121.9
$\mathcal{O} = \psi b c d$ $\bar{b} \to \psi c d$	B_d	$\psi + \Lambda_c + \pi^- (cdd)$	2853.60
	B_s	$\psi + \Xi_c^0 \left(cds \right)$	2895.02
	B^+	$\psi + \Lambda_c \left(dcu \right)$	2992.86
	Λ_b	$\bar{\psi} + \overline{D}^0$	3754.7
$egin{aligned} \mathcal{O} &= \psi b c s \ ar{b} & ightarrow \psi c s \end{aligned}$	B_d	$\psi + \Xi_c^0 \left(csd \right)$	2807.76
	B_s	$\psi + \Omega_c \left(css \right)$	2671.69
	B^+	$\psi + \Xi_c^+ \left(csu \right)$	2810.36
	Λ_b	$\bar{\psi} + D^- + K^+$	3256.2

CP Violation in B mesons

Other Signals of Baryogengesis

- Apparent L violation in pion decays [G.Elor, R. McGehee, [to appear]]
- Neutron-Antneutron oscillations can be excellent probes of various viable baryogengesis mechanisms [C. Grojean, B. Shakya, J. Wells, Z. Zhang [arXiv:1806.00011]]
- Long lived decays at colliders [G. Alonso-Alvarez, G.Elor, A. Neslon, H. Xiao [arXiv:1907.10612 JHEP]], [K. Aitken, D. McKeen, A. Nelson, T. Neder [arXiv:1708.01259 PRD]]

• . . .

Goals and Timeline of a White Paper

- Physics Goals: Summary of the existing mechanisms of baryogengesis with an emphasis on possible experimental efforts for testability.
- Community Goal: Stronger and larger baryogenesis community in the United States. Continue to bring theorists and experimentalists together.
- Timeline: Recruiting contributors by December, and publishing a white paper in May.

Goals and Timeline of a White Paper

- Physics Goals: Summary of the existing mechanisms of baryogengesis with an emphasis on possible experimental efforts for testability.
- Community Goal: Stronger and larger baryogenesis community in the United States. Continue to bring theorists and experimentalists together.
- Timeline: Recruiting contributors by December, and publishing a white paper in May.

Thank you